Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Exp Appl Acarol ; 79(1): 21-33, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31552560

RESUMO

Dispersal of eriophyoid mites is crucial for the successful colonization of new plants. Literature suggests that their long-distance dispersal is through aerial transfer. During dispersal, eriophyoids might be captured in vapor or fine drops of water (perhaps most likely in clouds) where they might be protected against water loss and desiccation, but where they would have no food and be exposed to low temperatures and oxygen concentrations. Considerable resistance of these mites to these stressful environmental conditions is expected and has only partly been confirmed experimentally. The aim of the bioassays conducted here was to assess the survival of five eriophyoid species off their host plants, with poor oxygen availability under two temperature regimes. The bioassays were carried out on live mites dipped into two media used as microenvironments: (1) vaseline oil (used also as control treatment), and (2) water solution of Tween 80 (0.2%) and cycloheximide (50 mg/l). The bioassays were performed at 5 ± 1 and 25 ± 1 °C. The survival of mites was assessed weekly (5 °C) or daily (25 °C) by counting live and active specimens. The following species were subjected to the bioassays: Aceria caulobia (a stem gall mite), Aceria ficus (a vagrant mite), Cecidophyopsis hendersoni (a vagrant mite), Colomerus vitis (protogyne/male population and deutogyne morphs; a leaf gall mite) and Phytoptus avellanae (a bud gall mite). The survival rate of the mites was higher at 5 °C than at 25 °C under both experimental conditions. At 5 °C, the survival of almost all species was higher in the water solution (up to 6-7 weeks) than in vaseline oil (3-5 weeks). Longer survival was found for A. caulobia and P. avellanae (gall-making species) than for C. hendersoni and A. ficus (vagrant species). As expected, the deutogynes of C. vitis survived longer than its protogynes. The current results suggest that individuals of some of the tested species are well suited for withstanding cold, starvation and low oxygen rates, which could be found at higher atmospheric layers, within the clouds, allowing them an effective long-distance dispersal.


Assuntos
Distribuição Animal , Longevidade , Ácaros/fisiologia , Animais , Temperatura Baixa , Feminino , Temperatura Alta , Masculino , Oxigênio/análise , Especificidade da Espécie
3.
Front Physiol ; 10: 604, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191334

RESUMO

This study focuses on several aspects of communication strategies adopted by adults of the Mediterranean flat-headed root-borer Capnodis tenebrionis (Coleoptera: Buprestidae). Morphological studies on the structures involved in mate recognition and acceptance revealed the presence of porous areas in the pronota in both sexes. These areas were variable in shape and size, but proportionally larger in males. The presence of chaetic, basiconic, and coeloconic sensilla in the antennae of both males and females was verified. Bioassays revealed stereotyped rituals in males and the involvement of female pronotal secretions in mate recognition and acceptance. During the mating assays, the female's pronotum was covered by a biologically inert polymeric resin (DenFilTM), which prevented males from detecting the secretions and from completing the copulation ritual. The use of the resin allowed for the collection of chemical compounds. GC-MS analysis of the resin suggested it may be used to retain compounds from insect body surfaces and revealed sex-specific chemical profiles in the cuticles. Since adult C. tenebrionis may use volatile organic compounds (VOCs) emitted from leaves or shoots, the VOC emission profiles of apricot trees were characterized. Several volatiles related to plant-insect interactions involving fruit tree species of the Rosaceae family and buprestid beetles were identified. To improve understanding of how VOCs are perceived, candidate soluble olfactory proteins involved in chemoreception (odorant-binding proteins and chemosensory proteins) were identified using tissue and sex-specific RNA-seq data. The implications for chemical identification, physiological and ecological functions in intraspecific communication and insect-host interactions are discussed and potential applications for monitoring presented.

4.
J Environ Monit ; 12(8): 1575-81, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20574577

RESUMO

Several approaches to monitor the bioavailability and ecotoxicity of pentachlorophenol (PCP) in sterile and non sterile soils as a function of aging are reported. Porapak resins and water were used to assess the bioaccessibility and the bioavailability of PCP in soil. Aging effects were observed mainly after 240 d of aging. Actual bioavailability, measured as PCP bioaccumulation in earthworms, decreased more markedly with time. The ecotoxicological biomarker neutral red retention time (NRRT) displayed a dose dependent effect but no aging effects after exposing the earthworms to polluted soils. Nevertheless, mortality of earthworms increased after 240 d at 150 mg kg(-1) contamination. In contrast, the luminescent biosensor Pseudomonas fluorescens pUCD607 evidenced in non sterilized samples a slight reduction of ecotoxicity in time related to the degradation of the molecule. Once again, results highlight the necessity to study the fate of soil pollutants with different chemical and biological approaches. Different PCP degradation pathways and/or the different sensitivity of earthworms and bacteria could explain the different behaviours observed.


Assuntos
Monitoramento Ambiental , Oligoquetos/efeitos dos fármacos , Pentaclorofenol/análise , Praguicidas/análise , Poluentes do Solo/análise , Animais , Biodegradação Ambiental , Oligoquetos/metabolismo , Pentaclorofenol/metabolismo , Pentaclorofenol/toxicidade , Praguicidas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
5.
Chemosphere ; 77(1): 80-6, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19539347

RESUMO

The influence of compost on the bioaccessibility, bioavailability and ecotoxicity of pentachlorophenol (PCP) as a function of time was studied by means of different chemical and ecotoxicological methods. Experiments were conducted in both sterile and non-sterile microcosms and samplings carried out at 20, 60 and 120d from initial contamination. PCP bioaccessibility, assessed by means of Porapak resin extraction, was around 75% of the applied dose with no aging or compost effects. Two different methods were applied to assess the bioavailability of PCP, respectively, to bacteria and earthworms and linked to ecotoxicological assays (biosensor and earthworm coelomocytes assays). Water extraction was applied to assess the bioavailability to bacteria: results showed that this fraction was always below 50%, with significant decreases as a result of aging processes and compost addition. In non-sterile microcosms, compost amendment increased the amount of PCP biodegraded, while the ecotoxicological assay with the biosensor Pseudomonas fluorescens pUCD607 indicated a higher toxicity in the most degraded samples, thus suggesting the formation of more toxic metabolites. Earthworm body accumulation results were rather in accordance with water extractions data, with decreasing bioavailable amounts as a result of time and compost addition. No compost or aging effects were instead detected by coelomocytes assay. Results indicate how different methods must be applied altogether to assess the bioavailability and ecotoxicity of xenobiotics such as PCP in soil. The addition of compost was also proven as an effective strategy for the remediation of PCP contaminated soils, although issues related to the possible formation of toxic metabolites must be taken into account.


Assuntos
Ecotoxicologia , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Fertilizantes , Pentaclorofenol/metabolismo , Pentaclorofenol/toxicidade , Solo , Animais , Disponibilidade Biológica , Técnicas Biossensoriais , Poluentes Ambientais/química , Poluentes Ambientais/isolamento & purificação , Medições Luminescentes , Oligoquetos/metabolismo , Pentaclorofenol/química , Pentaclorofenol/isolamento & purificação , Pseudomonas fluorescens/metabolismo , Fatores de Tempo , Água/química
6.
Toxicol In Vitro ; 21(2): 302-7, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17142006

RESUMO

Pentachlorophenol (PCP) is widely distributed and highly persistent in soil, and represents a threat to the health of ecosystems. The present study aimed to assess the toxicity and bioavailability of PCP in soils as a function of different aging periods with the attempt to select a good toxicological assay for Eisenia andrei Bouché (Annelida: Lumbricidae). The experiments were performed on soil contaminated with PCP at 15 and 150ppm. After different aging periods (20, 60 and 120 days from spiking), bioavailability and toxicity were evaluated on E. andrei kept for 7 and 14 days in treated soils. The actual bioavailability decreased in relation to the aging for both PCP concentrations. No membrane damage was observed on coelomocytes collected by ethanol extrusion. Modifications in distribution of coelomocyte subpopulations were detected by flow cytometry on samples aged for 60 and 120 days at 150ppm PCP contamination. The reduction of lysosomal membrane stability, measured by neutral red retention time, was observed in all treatments. Worm mortality increased with aging in soils spiked with 150ppm of PCP. In conclusion, aging did not seem to reduce PCP cytotoxicity. This is the first report on in vivo toxicity of PCP evaluated on coelomocytes of E. andrei using different assays.


Assuntos
Oligoquetos/efeitos dos fármacos , Pentaclorofenol/toxicidade , Poluentes do Solo/toxicidade , Animais , Disponibilidade Biológica , Vermelho Neutro , Oligoquetos/metabolismo , Pentaclorofenol/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...